3.20.5 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx\) [1905]

3.20.5.1 Optimal result
3.20.5.2 Mathematica [A] (verified)
3.20.5.3 Rubi [A] (verified)
3.20.5.4 Maple [A] (verified)
3.20.5.5 Fricas [A] (verification not implemented)
3.20.5.6 Sympy [A] (verification not implemented)
3.20.5.7 Maxima [A] (verification not implemented)
3.20.5.8 Giac [A] (verification not implemented)
3.20.5.9 Mupad [B] (verification not implemented)

3.20.5.1 Optimal result

Integrand size = 24, antiderivative size = 113 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=\frac {7 \sqrt {1-2 x}}{9 (2+3 x)^3}+\frac {49 \sqrt {1-2 x}}{9 (2+3 x)^2}+\frac {1138 \sqrt {1-2 x}}{21 (2+3 x)}+\frac {78506 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{21 \sqrt {21}}-110 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
78506/441*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-110*arctanh(1/11*55 
^(1/2)*(1-2*x)^(1/2))*55^(1/2)+7/9*(1-2*x)^(1/2)/(2+3*x)^3+49/9*(1-2*x)^(1 
/2)/(2+3*x)^2+1138/21*(1-2*x)^(1/2)/(2+3*x)
 
3.20.5.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.73 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=\frac {\sqrt {1-2 x} \left (4797+13999 x+10242 x^2\right )}{21 (2+3 x)^3}+\frac {78506 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{21 \sqrt {21}}-110 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)),x]
 
output
(Sqrt[1 - 2*x]*(4797 + 13999*x + 10242*x^2))/(21*(2 + 3*x)^3) + (78506*Arc 
Tanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(21*Sqrt[21]) - 110*Sqrt[55]*ArcTanh[Sqrt[5 
/11]*Sqrt[1 - 2*x]]
 
3.20.5.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.08, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {109, 168, 27, 168, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^4 (5 x+3)} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{9} \int \frac {120-163 x}{\sqrt {1-2 x} (3 x+2)^3 (5 x+3)}dx+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{9} \left (\frac {1}{14} \int \frac {42 (216-245 x)}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)}dx+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (3 \int \frac {216-245 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)}dx+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{9} \left (3 \left (\frac {1}{7} \int \frac {9291-5690 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {1138 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{9} \left (3 \left (\frac {1}{7} \left (63525 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx-39253 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx\right )+\frac {1138 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{9} \left (3 \left (\frac {1}{7} \left (39253 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-63525 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}\right )+\frac {1138 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{9} \left (3 \left (\frac {1}{7} \left (\frac {78506 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{\sqrt {21}}-2310 \sqrt {55} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\right )+\frac {1138 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {49 \sqrt {1-2 x}}{(3 x+2)^2}\right )+\frac {7 \sqrt {1-2 x}}{9 (3 x+2)^3}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)),x]
 
output
(7*Sqrt[1 - 2*x])/(9*(2 + 3*x)^3) + ((49*Sqrt[1 - 2*x])/(2 + 3*x)^2 + 3*(( 
1138*Sqrt[1 - 2*x])/(7*(2 + 3*x)) + ((78506*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x 
]])/Sqrt[21] - 2310*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/7))/9
 

3.20.5.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.20.5.4 Maple [A] (verified)

Time = 1.04 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.61

method result size
risch \(-\frac {20484 x^{3}+17756 x^{2}-4405 x -4797}{21 \left (2+3 x \right )^{3} \sqrt {1-2 x}}+\frac {78506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{441}-110 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}\) \(69\)
derivativedivides \(-110 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}-\frac {54 \left (\frac {1138 \left (1-2 x \right )^{\frac {5}{2}}}{63}-\frac {6926 \left (1-2 x \right )^{\frac {3}{2}}}{81}+\frac {8204 \sqrt {1-2 x}}{81}\right )}{\left (-4-6 x \right )^{3}}+\frac {78506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{441}\) \(75\)
default \(-110 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}-\frac {54 \left (\frac {1138 \left (1-2 x \right )^{\frac {5}{2}}}{63}-\frac {6926 \left (1-2 x \right )^{\frac {3}{2}}}{81}+\frac {8204 \sqrt {1-2 x}}{81}\right )}{\left (-4-6 x \right )^{3}}+\frac {78506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{441}\) \(75\)
pseudoelliptic \(\frac {78506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{3} \sqrt {21}-48510 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{3} \sqrt {55}+21 \sqrt {1-2 x}\, \left (10242 x^{2}+13999 x +4797\right )}{441 \left (2+3 x \right )^{3}}\) \(80\)
trager \(\frac {\left (10242 x^{2}+13999 x +4797\right ) \sqrt {1-2 x}}{21 \left (2+3 x \right )^{3}}-55 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {-5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}+8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )-\frac {39253 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{441}\) \(116\)

input
int((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x),x,method=_RETURNVERBOSE)
 
output
-1/21*(20484*x^3+17756*x^2-4405*x-4797)/(2+3*x)^3/(1-2*x)^(1/2)+78506/441* 
arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-110*arctanh(1/11*55^(1/2)*(1- 
2*x)^(1/2))*55^(1/2)
 
3.20.5.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.15 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=\frac {24255 \, \sqrt {55} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} \log \left (\frac {5 \, x + \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 39253 \, \sqrt {21} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} \log \left (\frac {3 \, x - \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 21 \, {\left (10242 \, x^{2} + 13999 \, x + 4797\right )} \sqrt {-2 \, x + 1}}{441 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x),x, algorithm="fricas")
 
output
1/441*(24255*sqrt(55)*(27*x^3 + 54*x^2 + 36*x + 8)*log((5*x + sqrt(55)*sqr 
t(-2*x + 1) - 8)/(5*x + 3)) + 39253*sqrt(21)*(27*x^3 + 54*x^2 + 36*x + 8)* 
log((3*x - sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 21*(10242*x^2 + 13999 
*x + 4797)*sqrt(-2*x + 1))/(27*x^3 + 54*x^2 + 36*x + 8)
 
3.20.5.6 Sympy [A] (verification not implemented)

Time = 75.37 (sec) , antiderivative size = 581, normalized size of antiderivative = 5.14 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=- \frac {605 \sqrt {21} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {21}}{3} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {21}}{3} \right )}\right )}{7} + 55 \sqrt {55} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {55}}{5} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {55}}{5} \right )}\right ) + 1452 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) - \frac {1736 \left (\begin {cases} \frac {\sqrt {21} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}}\right )}{1029} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{3} + \frac {784 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {5 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{32} + \frac {5 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{32} - \frac {5}{32 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} - \frac {1}{48 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{3}} - \frac {5}{32 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}} - \frac {1}{48 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{3}}\right )}{7203} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{3} \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**4/(3+5*x),x)
 
output
-605*sqrt(21)*(log(sqrt(1 - 2*x) - sqrt(21)/3) - log(sqrt(1 - 2*x) + sqrt( 
21)/3))/7 + 55*sqrt(55)*(log(sqrt(1 - 2*x) - sqrt(55)/5) - log(sqrt(1 - 2* 
x) + sqrt(55)/5)) + 1452*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 2*x)/ 
7 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sqrt(21)*sqrt(1 - 2 
*x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2*x) > 
-sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(21)/3))) - 1736*Piecewise((sqrt(21)*( 
3*log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/16 - 3*log(sqrt(21)*sqrt(1 - 2*x)/7 + 
1)/16 + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)) + 1/(16*(sqrt(21)*sqrt(1 - 2 
*x)/7 + 1)**2) + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) - 1/(16*(sqrt(21)*s 
qrt(1 - 2*x)/7 - 1)**2))/1029, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt(1 - 2 
*x) < sqrt(21)/3)))/3 + 784*Piecewise((sqrt(21)*(-5*log(sqrt(21)*sqrt(1 - 
2*x)/7 - 1)/32 + 5*log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/32 - 5/(32*(sqrt(21)* 
sqrt(1 - 2*x)/7 + 1)) - 1/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)**2) - 1/(48*( 
sqrt(21)*sqrt(1 - 2*x)/7 + 1)**3) - 5/(32*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) 
+ 1/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)**2) - 1/(48*(sqrt(21)*sqrt(1 - 2*x) 
/7 - 1)**3))/7203, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(2 
1)/3)))/3
 
3.20.5.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.13 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=55 \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {39253}{441} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {4 \, {\left (5121 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - 24241 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 28714 \, \sqrt {-2 \, x + 1}\right )}}{21 \, {\left (27 \, {\left (2 \, x - 1\right )}^{3} + 189 \, {\left (2 \, x - 1\right )}^{2} + 882 \, x - 98\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x),x, algorithm="maxima")
 
output
55*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1 
))) - 39253/441*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3* 
sqrt(-2*x + 1))) + 4/21*(5121*(-2*x + 1)^(5/2) - 24241*(-2*x + 1)^(3/2) + 
28714*sqrt(-2*x + 1))/(27*(2*x - 1)^3 + 189*(2*x - 1)^2 + 882*x - 98)
 
3.20.5.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.09 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=55 \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {39253}{441} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {5121 \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - 24241 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 28714 \, \sqrt {-2 \, x + 1}}{42 \, {\left (3 \, x + 2\right )}^{3}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x),x, algorithm="giac")
 
output
55*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqr 
t(-2*x + 1))) - 39253/441*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 
 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/42*(5121*(2*x - 1)^2*sqrt(-2*x + 1 
) - 24241*(-2*x + 1)^(3/2) + 28714*sqrt(-2*x + 1))/(3*x + 2)^3
 
3.20.5.9 Mupad [B] (verification not implemented)

Time = 1.41 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.79 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)} \, dx=\frac {78506\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{441}-110\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )+\frac {\frac {16408\,\sqrt {1-2\,x}}{81}-\frac {13852\,{\left (1-2\,x\right )}^{3/2}}{81}+\frac {2276\,{\left (1-2\,x\right )}^{5/2}}{63}}{\frac {98\,x}{3}+7\,{\left (2\,x-1\right )}^2+{\left (2\,x-1\right )}^3-\frac {98}{27}} \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^4*(5*x + 3)),x)
 
output
(78506*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/441 - 110*55^(1/2)*at 
anh((55^(1/2)*(1 - 2*x)^(1/2))/11) + ((16408*(1 - 2*x)^(1/2))/81 - (13852* 
(1 - 2*x)^(3/2))/81 + (2276*(1 - 2*x)^(5/2))/63)/((98*x)/3 + 7*(2*x - 1)^2 
 + (2*x - 1)^3 - 98/27)